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Solid Particle Erosion
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Dynamic process that causes material removal from a target surface due
to impingement of fast-moving solid particles
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Erosion Prediction
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= Can typically be accomplished either through testing programs or with
computational fluid dynamics (CFD) multiphase modeling efforts

" Testing can generally be:

. COMPUTATION,
— expensive
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— limited in terms of conditions that the facility can handle

— time-consuming

* Computational modeling of erosion is a low-cost alternative to testing
for preliminary design analysis, but models:

— are semi-empirical
— have a low degree of accuracy
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Computational Erosion Prediction

Parameters Selected for Particle Erosion Models
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Erodent Target Fluid Flow
* Density * Density * Impact angle
A review of 28 * Hardness * Hardness * Impact angle maximum wear
different erosion * Moment of inertia * Flow stress * Kinetic energy transfer from
models provided * Roundness * Young's modulus particle to target
33 different * Single mass * Fracture toughness * Temperature
. * Size * Ciritical plastic strain
Input parameters * Velocity * Depth of deformation
* Rebound velocity * Incremental strain per impact
* Kinetic energy of particle |+ Thermal conductivity
On average only * Melting temperature
5 parameters are *  Enthalpy of melting
used per model * Cutting energy
* Deformation energy
* Erosion resistance
* Heat capacity
* Grain molecular weight
*  Weibull flaw parameter

Sy e Lamé constant ‘
* Grain diameter




Objective
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Improve and create a new CFD erosion model by determining the main
contributing factors that influence erosion using laboratory-based experiments
to refine CFD erosion modeling
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Eroded test articles from testing efforts at SwRI
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Combination of Validation Testing and Modeling Effort

. . 1 : Amy.mccleney@swri.or
Recirculating Particle Erosion Test Facility — Jet Impingement Tests Y /@ ®

2013 Study
Angle of impact
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2019 Study
Particle hardness
Particle breakdown

Material type

Material hardness
Impact velocity
Turbulence
Carrier fluid velocity

Carrier fluid flow rate
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Technical Approach
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Combination of Experimental Testing and Computational Modeling Effort

Impingement Coupon Particle Image Velocimetry Computational Modeling
Analysis (PIV) Analysis Analysis

Develop Correlations
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Test Facility Configuration
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CAD Model of Test Section Arrangement Facility Integration

Coupon Stand Holder Assembly
Exploded View

Coupon

Coupon Holder

Post Insert 2

Post
&

Base Plate

Release Pin 2

Nozzle Insert , Facility Integration
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Varying Test Conditions
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Particle Particle Mean Coupon Tvbe Flow Rate Particle Carrier Fluid Angle of
Type Diameter P yP Concentration Viscosity Impact
12.5 gpm 20°
Silicon | 89 um (150-grit) | . meone! 623 13.8 gpm 1,200 ppm 40°
. ... | 316 Stainless Steel 2,500 ppm | cP o
Carbide | 63 um (220-grit) , |5 gpm 60
Quartz | 37 um (280-grit) 304 Stainless Steel 17.5 gpm 5,000 ppm 10 cP 30°
606 Aluminum ' 7,500 ppm o
20 gpm 920
* 96-hour test duration Silicon Carbide Particles _Eroded 316 Stainless Steel
* Test samples pulled approximately & “""‘\ 't" L7 .

24 intervals
* Particle size distribution measurement
* High-resolution images of particles and
coupons
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PIV Test Configuration
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CFD Model and Mesh
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Domain Mesh
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CFD Approach
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= Analysis conducted in ANSYS® Fluent® Continuous Phase
Flow Calculation

* Eulerian-Lagrangian approach

* Using discrete phase modeling (DPM)

Particle Trajectory

* Stochastic tracking Calculation

= C-based user-defined macro analyzed localized
erosion rates (kg/m?-s) at wall boundaries of interest

Update Continuous
Multiphase Model Integration Phase Source Terms

|. Single-phase model only
2. Discrete phase model (DPM) with
constant-sized particles

DPM with particle size distribution
Review default erosion models
Integrate SwRI erosion model
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Experimental Program Results

Mass Loss (grams)
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. .5 Particle Size Reduction Results
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New Erosion Model
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Equation takes the following form: o SE = specific erosion (unitless)

o K = constant coefficient (unitless)
° v = velocity (m/s)

SE = Kv"D¥BY f(a)C, o D, = particle size (um)
o B = Brinell hardness = SI form (unitless)
o fla) = impact angle function (degrees)

SE = ERerOSfonAface ° a = impact angle (degrees)

Mp o (, = concentration (ppm)
e n, X,y =constants (unitless)
o ER,, .., =erosion rate (kg/m?-s)
e A, = surface area of the impacted wall (m?)
e M, = mass flow rate of the impacting stream of
particles (kg/s)
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Comparison Between Default Models

New Model:

SE =2.3 x10717(0.9978v — 0.0016)*793D 93 B~037%f (a) C,
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f(a) =9.37a — 42.295a? + 110.864a3 — 175.804a* + 170.137a® — 98.398a® + 31.211a” — 4.11a®

Fluent
Default

Finnie
Model

fiiitit it

For Cp < 1,570 ppm
Co=9x%x1071C—-5x%x 10713

For Co = 1,570 ppm
Co=8x10"1C—-2x10"13

Oka
Model

Minimum Maximum Average DiffePr:r::en:rom
Erosion Model | Erosion 5ate Erosion 5ate Erosion ?ate S e
(Ibm/ft*-s) (Ibm/ft*-s) (Ibm/ft*-s) Results
Experimental 3.10 x 107
Fluent Default| .46 x 10-10 542 x |07 1.00 x 10 -100%
Finnie .70 x 10”7 499 x 10° .50 x 10 385%
McLaury 3.51 x [0 .19 x 10 2.50 x |10 708%
Oka 4.24 x |08 1.89 x 10 5.00 x |08 620%
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New Erosion Model Results
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Velocity
velocity crosssection
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Summary and Next Steps
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" Validation testing program undertaken to help improve erosion prediction
computationally

" | arge dataset collected, which helps generate empirical correlations that
were integrated into the CFD software to calculate localized erosion rates

* New model demonstrated a 28% agreement with validation data, showing
an 25% improvement over commercial software

Slurry Flow

b e | Currently validating model accuracy on
t/ Screen Coupon .
complex geometries

Base Pipe
Coupon
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Questions!?

Amy.mccleney@swri.org



